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The lifetime of a turbulent shear flow is inversely related to the amount of surrounding fluid it entrains. A
dynamical systems model of such a flow, dominated by coherent structures, was recently proposed �R. Govin-
darajan, Phys. Rev. Lett. 88, 134503 �2002��, where an axisymmetric heated jet was modelled by a pair of
leap-frogging vortex rings. In the present paper we study the equivalent two-dimensional flow, namely, two
pairs of corotating point vortices, of opposite sign. We prove that the system is nonintegrable for any finite
separation between the pairs, and show that entrainment is a natural consequence of chaotic advection. The
effect of core diffusion due to viscosity is studied, and it is shown that the entrainment rate is reduced with
increasing viscosity, by a reduction in leap-frogging frequency.
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I. INTRODUCTION

The flow of a jet into a surrounding quiescent fluid me-
dium is ubiquitous, e.g., water flowing out of a faucet, or hot
gasses spewing out of volcanoes. Being usually turbulent, a
jet provides a good theoretical and experimental case study
of a free-shear flow. Depending on the geometry of the
source, a jet could be either axisymmetric, or practically pla-
nar. Probably the most significant phenonemenon taking
place in a jet is that as it progresses downstream, more and
more of surrounding �ambient� fluid is engulfed �in the ter-
minology of Ref. �2�� and begins to travel with it. The new
fluid then mixes with the fluid carried from the source. This
process is known as entrainment. The jet thus advects an
increasing mass of fluid and becomes progressively more
dilute in the original fluid. Coherent vortical structures domi-
nate such a flow. They account for a considerable fraction of
the kinetic energy and play a key role in the process of en-
trainment.

In the vicinity of coherent structures, transport through
advection is often chaotic �3�. A study of chaotic advection
can give quantitative information on the engulfment and
stretching of portions of fluid. A special feature of chaotic
advection in vortical flows is that even when the basic flow is
periodic the Lagrangian dynamics of fluid particles can be
chaotic �4�. An understanding of this process could be crucial
in determining how pollutant is dispersed in the atmosphere,
how dangerous the trailing vortex system of a landing air-
craft can be to a follower aircraft, how clouds can retain
water vapor as they rise through the atmosphere, to quote but
a few examples.

In two-dimensional flows, due to repeated vortex merg-
ing, isolated concentrated vortex patches are often found to
form even in initially randomly distributed flows. Since the
dissipation time scales of these patches are much larger than
the eddy turnover times, such vortices are able to sustain
themselves for long times, and a point-vortex model is often
a good approximation �5�.

Our purpose here is to study model vortical flows under
the dynamical systems framework to quantify entrainment
and the resulting chaos. In a recent paper �1�, it was shown
that a small level of buoyancy, which in real life would be
achieved by off-source volumetric heating of the flow rela-
tive to the surroundings, can modify the entrainment drasti-
cally, and on occasion even shut it off completely. The pre-
dictions made in the paper were found to be in qualitative
agreement with those made by direct numerical simulations
�6� and experiments �7�. In the present paper, for better un-
derstanding of the physics involved, we consider the two-
dimensional analog of the flow considered in Ref. �1�,
namely, two pairs of point vortices. In the inviscid limit,
these vortex pairs perform a periodic leap-frogging motion,
as follows. For the instant of time shown in Fig. 1, the pair of
counter-rotating vortices at x=x1 move with greater speed
than the pair at x=x2. The separation between the vortices at
the rear decreases until they overtake the pair in front, and
increases thereafter. The process is repeated with a frequency
dependent on the initial streamwise separation. The four vor-

*Electronic address: rama@jncasr.ac.in FIG. 1. Configuration of the leap-frogging vortex pairs.
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tices here will be referred to as LFVP, for leap-frogging vor-
tex pairs. The Lagrangian fluid motion due to LFVP was
numerically studied by Pentek et al. �4�. The system was
found to be strongly nonlinear and the presence of hyper-
bolic fixed points was found responsible for the chaotic na-
ture of the flow. It can easily be demonstrated that transport
and entrainment of the ambient fluid into the flow are natural
consequences of the tangling of the manifolds arising from
the hyperbolic fixed points of this system. The flow dynam-
ics is area and orientation preserving �8�, these and other
properties of the manifolds are exploited here to obtain the
entrainment quantitatively, and estimate chaos and mixing.

The two main results of this paper are as follows: �i� the
motion of the surrounding fluid due to LFVP is proved non-
integrable for any finite separation between the vortex pairs.
�ii� Viscosity is shown to have a mitigating influence on the
leap-frogging behavior, and hence on the entrainment.

The rest of the paper is organized as follows. The basic
equations are written in Sec. II. The nonintegrability of the
flow is discussed in Sec. III, Sec. IV discusses the effect of
buoyancy on entrainment, and Sec. V is devoted to the effect
of viscosity.

II. INVISCID FLOW: BASIC EQUATIONS

The governing equations that describe the motion of the
LFVP are Hamiltonian, and since the flow is symmetric with
respect to the x axis, the Hamiltonian for the symmetry-
reduced problem can be written as follows �4�:

H�xi,yi� =
k2

2�
ln�4y1y2

�x1 − x2�2 + �y1 + y2�2

�x1 − x2�2 + �y1 − y2�2� = E �1�

and

kiẋi =
�H

�yi
, kiẏi = −

�H

�xi
. �2�

The energy E and the average distance �y1+y2� /2 of the
vortices from the x axis are integrals of the motion. For
E�0, the motion of the vortices themselves, as discussed
above, is that of a periodic leap frog �4�. The Lagrangian
motion of a fluid particle due to the presence of these vorti-
ces, however, is much more complicated. The latter is de-
scribed by the streamfunction

��x,y,t� = − � j
kj

�
ln rj�t� , �3�

where

vx�x,y,t� =
��

�y
and vy�x,y,t� = −

��

�x
�4�

are the streamwise and normal components of velocity, re-
spectively.

III. NONINTEGRABILITY OF FLOW DUE TO THE LFVP

We prove analytically here that the tracer particle dynam-
ics is nonintegrable. Bagrets et al. �9� addressed the problem

of nonintegrability of more than two vortex rings using the
method of splitting of separatrices �more commonly known
as the Melnikov technique�. We use the same principle to
prove the nonintegrability of our system.

In what follows, we first consider a single corotating vor-
tex pair, for example, the pair lying below the x axis in Fig.
1. In the absence of any other vorticity, this pair executes
motion on a circle, and the flow induced in the surroundings
is integrable. This will be our zeroth-order solution. A second
pair is then introduced at a very large �vertical, in the figure�
distance, from the first pair, such that the influence of the
newly introduced pair on the flow in the vicinity of the origi-
nal pair may be treated as a perturbation on the original flow.
The first order term in the resulting perturbation expansion is
shown to have no influence except on the mean velocity. The
second-order term ensures that the system is nonintegrable
for any finite vertical separation. Using this, we demonstrate
that the process of entrainment is a natural consequence of
the chaotic nature of the advection.

The motion of all four point vortices is described by

2�

k

dxi

dt
=

1

yi
+

2�yi + yj�
�xi − xj�2 + �yi + yj�2 −

2�yi − yj�
�xi − xj�2 + �yi − yj�2 ,

�5�

2�

k

dyi

dt
=

2�xi − xj�
�xi − xj�2 + �yi + yj�2 −

2�xi − xj�
�xi − xj�2 + �yi − yj�2 ,

�6�

where the index i=1,2 �see Fig. 1� and j=2 when i=1 and
vice versa. Without loss of generality we may take k=�. We
then make the transformation �9�, xi→�x̃i, yi→1+�ỹi,
t→�2t̃, where i=1,2; and define x̃r� x̃1− x̃2, and ỹr� ỹ1− ỹ2.
The small parameter � is of O�xr /yr�.

In the new variables Eqs. �5� and �6� reduce to

dx̃r

dt̃
= −

2ỹr

x̃r
2 + ỹr

2 − �2 ỹr

2
+ o��3� , �7�

dỹr

dt̃
=

2x̃r

x̃r
2 + ỹr

2 − �2 x̃r

2
+ o��3� . �8�

Equation �7� and �8� have a solution of the form

�x̃r

ỹr
	 = � x̃r0 + �2x̃r2 + o��3�

ỹr0 + �2ỹr2 + o��3�
	 . �9�

The zeroth-order solution is given by x̃r0=2 cos�t̃ /2� and
ỹr0=2 sin�t̃ /2�, which represents motion on the circumfer-
ence of a circle, and the second-order term satisfies

d

dt̃
�x̃r2

ỹr2
	 = � �sin t̃�/2 − �cos t̃�/2

− �cos t̃�/2 − �sin t̃�/2
	�x̃r2

ỹr2
	 − � sin�t̃/2�

cos�t̃/2�
	 .

�10�

The solution is

x̃r2 = sin�t̃�sin�t̃/2� − t̃ sin�t̃/2� + �1�t̃ sin�t̃/2� + cos�t̃/2��

− �2 sin�t̃/2� , �11�
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ỹr2 = − sin�t̃�cos�t̃/2� + t̃ cos�t̃/2� − 2 sin�t̃/2� + �1 sin�t̃/2�

− �1t̃ cos�t̃/2� + �2 cos�t̃/2� . �12�

�1 and �2 are the second-order corrections at t=0 to xr and
yr, respectively.

The terms whose amplitudes are linear in time may be
recognized as secular terms �10�, which often arise due to
improper treatment of the system’s frequency. In other
words, the frequency of the perturbed system is no longer
1 /2, but has an O��2� correction. Accounting for this, one
obtains

x̃r = 2 cos �t̃ + �2�sin�t̃�sin�t̃/2� + �1 cos�t̃/2� − �2 sin�t̃/2��

+ o��3� , �13�

ỹr = 2 sin �t̃ + �2�− sin�t̃�cos�t̃/2� − 2 sin�t̃/2� + �1 sin�t̃/2�

+ �2 cos�t̃/2�� + o��3� , �14�

where

� = �0 + �2	� , �15�

with �0=1/2 and 	�= �1−�1� /2.
On performing the stretching transformation, x→�x̃ and

y→�ỹ, Eqs. �4�, describing the motion of a tracer particle in
the vicinity can be reduced to

dx̃

dt̃
= − � ỹ − ỹ1

�x̃ − x̃1�2 + �ỹ − ỹ1�2 +
ỹ − ỹ2

�x̃ − x̃2�2 + �ỹ − ỹ2�2�
+ � − �2 ỹ

2
+ o��3� , �16�

dỹ

dt̃
= � x̃ − x̃1

�x̃ − x̃1�2 + �ỹ − ỹ1�2 +
x̃ − x̃2

�x̃ − x̃2�2 + �ỹ − ỹ2�2�
− �2 x̃

2
+ o��3� . �17�

Since,

1

2�dx̃1

dt̃
+

dx̃2

dt̃
� = � + o��3� , �18�

in a coordinate system traveling with the midpoint of the line
joining the first corotating pair, one obtains the following
streamfunction for the Lagrangian particle:

� = −
1

2
ln
��x̃ − x̃1�2 + �ỹ − ỹ1�2���x̃ − x̃2�2 + �ỹ − ỹ2�2��

+
�2

4
�x̃2 − ỹ2� + o��3� . �19�

The variables now denote position in the moving coordinate
system. To simplify the algebra we define z̃= x̃+ iỹ,
z̃1=ei�t+�2 /2z̃r2, where z̃r2= x̃r2+ iỹr2. Due to the choice of
the coordinate system, z̃2=−z̃1. Equation �19� now reads as

� = − ln�z̃ − �ei�t + �2z̃r2�� − ln�z̃ + �ei�t + �2z̃r2��

+
�2

8
�z̃2 + zD2� + o��3� , �20�

which on performing a rotation transform z̃→ z̃ei�t reduces to

� = − ln�z̃ − 1� − ln�z̃ + 1� + �2�Re� z̃r2e−i�0t

z̃ − 1
�

− Re� z̃r2e−i�0t

z̃ + 1
� +

1

8
�z̃2e2i�0t + zD2e−2i�0t�	

+
1

2
��z̃�2 + o��3� . �21�

It is to be noted that the last term in the above expression
arises due to the rotation transformation. The final stream-
function one obtains after resubstituting z as x+ iy is of the
form �0+�2�2+o��3�, where

�0 = − 1
2 
ln��x̃ − 1�2 + ỹ2� + ln��x̃ + 1�2 + ỹ2�� + 1

4 �x̃2 + ỹ2�

�22�

and

�2 = 
��1 − 2 sin2�t̃/2���x̃ − 1�

+ ��2 − 2 sin�t̃��ỹ�/
2��x̃ − 1�2 + ỹ2��

− 
��1 − 2 sin2�t̃/2���x̃ + 1�

+ ��2 − 2 sin�t̃��ỹ�/
2��x̃ + 1�2 + ỹ2��

+ 1
4 
�x̃2 − ỹ2�cos�t̃� − 2x̃ỹ sin�t̃�� + 1

4 �1 − �1��x̃2 + ỹ2� .

�23�

The above streamfunction is the same as that of Ref. �9� at
zeroth order, but the higher orders differ. The zeroth-order
manifold describing the motion due to a single pair of coro-
tating vortices resembles the structures obtained by Ref. �11�
in the near-vortex region. The phase plot of the motion of the
particles is shown in Fig. 2. The positions of the vortices are
denoted by circles. The fixed points of the system are
�±5,0�, �0, 0�, and �0, ±3�. The fixed point �−5,0� has
two hetroclinic orbits, P1O1P2P1 and P1O2P2P1, and the
fixed point �0, 0� has a homoclinic orbit as shown in Fig. 2.
The stable and unstable manifolds of the unperturbed Hamil-
tonian ��0� are coincident. More important, these manifolds
are streamlines and act as total barriers to fluid transport. It is
when these manifolds are no longer coincident that entrain-
ment can take place, we shall see below that entrainment and
chaos are therefore directly connected.

On perturbing this flow by �2 as in Eq. �21�, the stable
and unstable manifolds split. Any transverse intersection of
these manifolds guarantees the nonintegrability of the system
�13�. The check for transverse intersection may be done by
evaluating the Melnikov function, defined by �8,13�
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M�t0� � �
−






�0,�2�„x�t�,y�t�,t + t0…dt , �24�

where 
,� is the Poisson bracket and t0 parametrizes the un-
perturbed manifold.

The distance between the stable and the unstable mani-
folds is directly proportional to the Melnikov function, and is
given by

d��2,t0� = − �2 M��2,t0�
�0„x�t0�,y�t0�…

. �25�

Hence, the manifolds intersect everytime M�t*�=0 for some
t*= t0. Further, if �M /�t*�0 �which defines a simple zero at
t*� then the manifolds intersect transversely �8�. A numerical
integration of Eq. �24� using Eqs. �22� and �23� is performed
for sufficiently large times over the unperturbed manifold,
and as t→ ±
 the trajectories of particles approach the stable
and unstable fixed points. The integration was performed for
three manifolds, namely, P1O1P2, P1O2P2, and POP in Fig.
2. It was found that for all three manifolds that contributions
from terms having coefficients �1, �2 on integration were
negligible. The Melnikov functions in the three cases were
found to be

− 3.3845 cos�t0� − 1.354 14 sin�t0� for P1O1P2,

− 0.2308 cos�t0� − 0.3857 sin�t0� for P1O2P2,

and 0.2923 cos�t0� + 0.022 85 sin�t0� for POP .

It is clear that the above expressions all possess simple zeros,
thus completing the proof of nonintegrability.

The splitting of the manifolds and their repeated intersec-
tion ensures the chaotic nature of the transport process. A
Poincaré section, sampled once during each time period of
the perturbed manifold, is plotted for increasing � in Figs. 3
and 4 to show the nature of the onset of chaos in the system.

On comparing with Fig. 2 one finds that trajectories which
were initially constrained to move along the streamlines now
sample a larger portion of the domain. Moreover, the inter-
change of external and internal fluid is now permissible,
hence chaotic advection is seen to be a natural reason for
transport. The exponential separation of the trajectories in
the region close to the transverse tangling aids in the process
of stretching. As t→ ±
, since the trajectories along the
separatrix approach the fixed points, the denominator of Eq.
�25� tends to zero. Hence, the distance between the stable
and unstable manifolds approaches infinity indicative of very
large stretching near the hyperbolic fixed points. This stretch-
ing, and how chaos and entrainment are directly related, be-
come evident in the following section where we discuss the
complete inviscid problem.

IV. THE COMPLETE INVISCID PROBLEM

In the proof of nonintegrability above, we had considered
the second pair of corotating vortices to be very far from the

FIG. 2. The manifolds of the hetroclinic and homoclinic fixed
points of the unperturbed Hamiltonian. The vortices are located at
�−1,0� and �1, 0�. P1, O, and P2 are hyperbolic fixed points, while
�0, ±3� are elliptic fixed points.

FIG. 3. The onset of chaos near the hyperbolic fixed point is
shown at �=0.01.

FIG. 4. Poincaré section illustrating the chaotic behavior at
�=0.1. Chaotic advection is primarily responsible for the transport
process, as the particles would otherwise be restricted to their
streamlines in the unperturbed flow.
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first pair. We now consider the physics of the complete prob-
lem, for any separation between the two pairs, i.e., we solve
Eqs. �1�–�4� without any approximation. A coordinate system
moving with the average velocity of the vortices is chosen
here to simplify the analysis. In the new coordinate system
�see Fig. 1�, two saddle points P1 and P2 are located at
y=0. From P2, an unstable manifold Wu emerges in the nor-
mal direction, while a stable manifold Ws approaches P1 as
shown in Fig. 5. The transverse tangling of these manifolds
is evident. The manifolds and the fixed points for the com-
plete problem, as expected, are different from those obtained
in the special limit of the preceding section. Note the shift in
focus from the vicinity of the corotating pair in earlier fig-
ures to the entire system here. The x axis now is the symme-
try plane of the four-vortex system. In Fig. 2, the symmetry
plane is located at a large negative value of y, and the fixed
points P1 and P2 are therefore not seen. Also, note that the

phase chosen for the Poincaré section in Fig. 5 is different
from that of the earlier figures.

By definition, a fluid particle located on a manifold stays
on it throughout its evolution in time. This immediately im-
plies that the occurrence of one intersection of these mani-
folds ensures their repeated intersection infinitely many
times. These transverse intersections lead to the formation of
Smale-horseshoes, giving rise to chaotic flow in the neigh-
borhood. The area of the lobes, shown as the shaded region
in Fig. 5, is preserved with time evolution. Since, the orien-
tation of each lobe with respect to the manifold remains the
same, the topology of the flow is preserved, resulting in the
entrainment of fluid from the external region to the internal
and vice versa. These properties, and the fact that a manifold
cannot intersect itself, lead to complicated stretching as
shown in Fig. 5. A close look at the Fig. 5 also reveals the
presence of Kolmogorov-Arnold-Moser �KAM� tori around
each of the vortices. These are closed curves in the Poincaré
section, serving as complete barriers to flow, and therefore
play an important role in deciding entrainment and mixing.
The region of interest, into and out of which entrainment is
measured, is taken to be that bounded by the curves P1O,
OP2, and P1P2. A detailed review of the properties of mani-
folds can be found in Wiggins �12�. The Poincaré section is

FIG. 5. A Poincaré section of the stable and unstable manifolds
emerging from saddle points P1 and P2, respectively, depicted. If
the manifolds intersect each other once, it is guaranteed that they
shall intersect infinitely many times, which gives rise to the stretch-
ing behavior of the lobes shown in this figure. The area of each lobe
is the same as all the others �8�. The vortices are denoted by
squares.

FIG. 6. The manifold of the fixed points at ub=−0.15 is plotted.
The lobe is seen to have negligible area and hence entrainment due
to transport process is little.

FIG. 7. Entrainment at a positive buoyancy, ub=0.151, is greater
than that in Fig. 6.

FIG. 8. At an even higher buoyancy value of ub=0.3 entrain-
ment is once again seen to decrease implying the nonmonotonous
variation of entrainment with buoyancy.
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taken here at the phase where the vortices are aligned at
x=0, but the results do not depend on this choice.

Effect of buoyancy: The heating or cooling of portions of
a flow results in buoyancy playing a lead role in chaotic
advection �1�. In particular, if the vortices are hotter or colder
than the surrounding flow, the entrainment is drastically af-
fected. This situation is modelled simply by giving the vor-
tices an additional �buoyancy� velocity Ub of the appropriate
sign. Ub results from the integrated effect of heating/cooling
over a time interval �1�. An immediate effect of buoyancy on
the flow topology can be seen in the change in the distance
between the fixed points. For Ub�0 and increasing, the fixed
points move closer to each other, and vanish above a critical
Ub, thus shutting off the entrainment. For Ub�0 and de-
creasing, the fixed points move further apart and their sepa-
ration goes to infinity below another critical Ub, again lead-
ing to a reduction in the entrainment. This implies that

entrainment is a nonmonotonic function of buoyancy, and
will attain a maximum at some critical buoyancy. Figures
6–8 depict the manifolds at different Ub. Here Ub is nondi-
mensionalized with the average streamwise velocity of the
vortices �Us� in the absence of buoyancy. The change in the
manifold structure illustrates the effect of buoyancy on en-
trainment. The fluid contained within a lobe formed by the
intersection of the stable and unstable manifolds is entrained
in one time period of the basic motion. The entrainment is
thus given by the area of a lobe. It has been checked that the
area within each lobe is identical. Figure 9 depicts the en-
trainment rate at various pair spacings 	x, where 	x is the
maximum streamwise distance during the leap-frog cycle.
One finds a maximum for every given initial pair spacing,
which is independent of the spacing.

The primary difference between leap-frogging vortex
rings �LFVR� and LFVP is that in the LFVR, the self-
induced velocity can be independently controlled by adjust-

FIG. 9. The entrainment rate as a function of the buoyancy
velocity. For each pair spacing, a maximum in the entrainment oc-
curs at an optimum buoyancy velocity. The maximum in the en-
trainment rate is independent of pair spacing.

FIG. 10. The computational system. The initial positions of the
vortex blobs are indicated by plus marks, with arrows showing the
sense of circulation. The absolute value of the circulation is 1. The
dots on the right-hand panel show the initial locations of tracer
particles in half the domain. The particles are symmetrically placed
on the other side as well. The trajectories of a few of the tracer
particles are shown on the left-hand panel.

FIG. 11. A typical plot of residence times in the vicinity of the
vortical structures. Darker portions indicate longer residence times.
Fluid in the immediate neighborhood of each blob moves forever
with it. The lobes in the upper region consist of fluid which is
drawn into the vicinity, and spends a long time there.

FIG. 12. Effect of viscosity on entrainment. The viscosity is
10−5 in nondimensional units for the left-hand panel, while for the
right-hand panel it is 10−3. The initial separations of the vortices for
both simulations are 	Y =1 and 	X=0.5. The simulations are both
run up to time=80.
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ing the ring thickness, so fixed points can vanish even with-
out buoyancy.

The discussion so far has been restricted to inviscid flow.
The viscous problem is treated in the following section, by a
two-dimensional vortex-method based simulation.

V. EFFECT OF VISCOSITY

The system of two leap-frogging vortex pairs is simulated
here in two dimensions by a vortex method. Two pairs of
vortex blobs, of initial configuration as shown in Fig. 10 are
located in an ambient medium consisting of tracer particles,
as shown. The coordinate system and the computational do-
main move forward with the average velocity of the vortices.
During each time period, tracer particles in the flow as well
as the blobs of vorticity propagate in accordance with the
Biot-Savart law. Viscosity is accounted for in the diffusion of
the vortex core alone �14�, and the effect on a given blob of
self-advection due to diffusion is neglected. We are inter-
ested in monitoring the residence times of various portions of
flow, where the residence time of a location is characterized
by the time that a particle originating there spends within the
computational domain. As discussed in Ref. �8�, particles
within the stable manifold display large residence times, and
the tangles obtained in residence time plots are thus a mea-
sure of entrainment in the system. In other portions of the
domain, trajectories are deviated by the presence of the vor-
tices, but the fluid is not entrapped. Tracer particles in such
regions leave the domain of interest within a short time. A
typical residence-time plot is shown in Fig. 11, where darker
portions indicate longer residence times.

In Fig. 12 the effect of increasing the viscosity by a factor
of 100 on the entrainment region is shown. It is immediately
apparent that the number of lobes reduce with increasing
viscosity, but the residence time within a lobe is higher. The
area of each lobe has been measured to be about the same,
for both levels of viscosity. In other words, the amount of
fluid entrained during one leap-frog cycle is about the same,
but the higher residence time could mean greater opportunity
for mixing at a molecular level between the original and
entrained fluid. However there is a significant reduction in
the entrainment rate. This is because as time progresses, dif-
fusion smears out the vortex core, which results in a reduc-
tion in the induced velocities and a slowing down of the
leap-frogging process, as shown in Fig. 13.

The effect of separation between the two pairs of counter-
rotating vortices for the viscous case is similar to what is
seen in the invisicd case, an example is shown in Fig. 14.

VI. SUMMARY

To summarize, the present paper carries the proof of non-
integrability of two-dimensional leap-frogging vortex pairs
using the Melnikov technique. The tangling of the manifolds
of the hyperbolic fixed points gives rise to chaos for any
finite separation between the two corotating pairs. This in
turn gives rise to entrainment, which varies nonmonotoni-
cally with the relative speeds of the vortical and nonvortical
portions of the flow. Viscosity slows down the dynamics sig-
nificantly and thus reduces entrainment rate.

ACKNOWLEDGMENTS

The authors would like to acknowledge M. Tyagi for hav-
ing useful discussions while doing this work. Funding from
the DRDO, Government of India, is gratefully acknowl-
edged. One of the authors �S.M.� would also like to thank
Jawaharlal Nehru Centre for Advanced Scientific Research
for supporting this work by their Summer Research Fellow-
ship Program.

FIG. 13. The time period of leap-frog in a low viscosity simu-
lation is nondimensional time units for the initial configuration con-
sidered �dashed line�. The period is maintained over several oscil-
lations. However, for the same initial configuration, when the
viscosity is high �solid line�, the leap-frogging behavior is similar at
short times, but slows down significantly at later stages.

FIG. 14. Effect of initial spacing of vortex pairs in the presence
of viscosity. The viscosity is 10−3, and the initial separations of the
vortices are 	Y =2 and 	X=0.4. As in the inviscid case �not shown�
the entrainment is shut off at low pair separations.
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